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Abstract

This paper is concerned with the modeling of joints with clearance within the framework of finite element based
dynamic analysis of nonlinear, flexible multibody systems. For actual joints, clearance, lubrication and friction phe-
nomena can significantly affect the dynamic response of the system. In this work, the effects of clearance and lubrication
are studied for revolute and spherical joints. The formulation is developed within the framework of energy preserving
and decaying time integration schemes that provide unconditional stability for nonlinear, flexible multibody systems.
Numerical examples are presented that demonstrate the efficiency and accuracy of the proposed approach. The im-
portance of modeling structural damping and limited driving power are discussed. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Joints are essential components of multibody systems, rigid or flexible. Usually, joints are modeled as
perfect components; in fact, in most multibody formulations, joints are not modeled per se. Rather, the
effect of joints, i.e. the constraints they impose on the behavior of the entire system, are modeled through a
set of kinematic constraints; the piece of hardware that actually constitutes the joint is not modeled. In
actual joints, clearance, friction, lubrication and impact forces will play an important role and can have a
significant effect on the dynamic response of the system. For instance, impact forces due to clearance induce
increased vibration and noise, reduce component life, and result in a loss of precision. Conversely, wear,
imperfections and tolerance mismatches result in joint clearances. Consequently, proper modeling of these
effects is required to achieve a better understanding of the phenomena associated with these imperfections.

There is a significant amount of literature discussing the treatment of clearance in joints. A variety
of problems have been considered: systems with rigid or flexible linkages presenting planar or spatial
configurations. Furthermore, a number of tribology effects have been investigated: friction, wear, and
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lubrication of the interacting surfaces. Although many of these effects have been studied individually, very
few formulations present comprehensive models for predicting the dynamic response of flexible multibody
systems with joint clearance.

A paper by Haines (1980) reviews the literature concerned with planar motion and impact at revolute
joints. Several authors have focused on systems with rigid links (see e.g. Rogers and Andrews, 1977;
Bengisu et al., 1986; Rhee and Akay, 1996; Zakhariev, 1999); however, this assumption seems to be too
restrictive for many practical systems. Consequently, flexibility effects were added in many subsequent
investigations. Dubowsky et al. (1987), Deck and Dubowsky (1994) considered the effect of link flexibility
for both planar and spatial cases but ignored the effect of lubrication. Liu and Lin (1990) added lubrication
effects through the squeeze film formula and Reynolds equation, although his formulation was limited to
planar problems. Xie et al. (1999) discuss the effect of joint clearance in planar problems without treating
the effect of lubrication. Bifurcation diagrams were used as a tool to examine system dynamic behavior.
Ravn et al. (1999) studied the effect of clearance on system response, including the effect of lubrication and
link flexibility. However, their model was limited to planar problems. All these papers focused on the
modeling of clearance in joints. Various formulations were used to model the multibody system and the
linkages were modeled as rigid components, or elastic components with modal reduction.

At the heart of the formulation of models for joints with clearance is the simulation of intermittent
contact. The different approaches to model intermittent contact fall into two broad categories depending on
the assumed duration of contact. In the first approach, contact is treated as a discontinuity, i.e. the duration
of contact is assumed to tend to zero. The configuration of the system is assumed to be identical before and
after impact, and the principle of impulse and momentum is used to compute the momenta after impact.
Energy transfer during impact can be modeled in a heuristic manner using the concept of coefficient of
restitution. This approach was first proposed by Kane (1962) , then applied to rigid multibody systems by
Haug et al. (1981), and extended to flexible systems by Khulief and Shabana (1986). The accuracy of this
approach is inherently limited by the assumption of a vanishing impact duration. Furthermore, energy
balance is not necessarily satisfied when the principle of impulse and momentum is applied (Kane, 1968).

In the second approach to contact modeling, the impact duration is finite, and the time history of the
forces acting between the contacting bodies which can be either rigid or deformable is explicitly com-
puted during the simulation. Of course, a constitutive law describing the force—deformation relationship
for the contacting bodies is required if the bodies are deformable. This approach was used by a number
of researchers Khulief and Shabana (1987), Lankarani and Nikravesh (1990), Cardona and Géradin
(1993), among others. Various types of constitutive laws were used, but the classical solution of the static
contact problem presented by Hertz, (see e.g. Timoshenko and Gere, 1961), has been used by many in-
vestigators. Energy dissipation can be added in an appropriate manner, as proposed by Hunt and Crossley
(1975).

In the present formulation, elastic bodies are modeled using the finite element method. For beam ele-
ments, the location of each node is represented by its Cartesian coordinates in an inertial frame, and the
rotation of the cross-section at each node is represented by a finite rotation tensor expressed in the same
inertial frame. The kinematic constraints among the various bodies are enforced via the Lagrange multiplier
technique. Although this approach does not involve a minimum set of coordinates, it allows a modular
development of finite elements for the enforcement of the kinematic constraints.

The modeling of joints with clearance is divided in three distinct parts: (1) a purely kinematic part de-
scribing the configuration of the joint inner and outer races, (2) a unilateral contact condition giving rise to
a contact force and (3) a lubrication model.

Section 3 describes the kinematic aspects of the problem for both two- and three-dimensional config-
urations. The candidate contact points (see e.g. Pfeiffer and Glocker (1996)) i.e. the points on the inner and
outer races that are about to come in contact, are obtained from relatively simple geometric considerations
and the definition of the relative distance ¢ between the races follows.
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The second part of the model, described in Section 4, is the unilateral contact condition which is readily
expressed in terms of the relative distance as ¢ > 0. This contact condition can be represented as a purely
kinematic condition ¢ — > = 0, where r is a slack variable used to enforce the positiveness of ¢. In order to
accommodate for the local deformation of the races, the local penetration or approach, denoted a, is de-
fined, and the contact condition then writes ¢ + a — > = 0. The last part of the model, presented in Section
5, deals with the forces associated with a thin oil film present between the inner and outer races of the joints.
A closed form solution of Reynolds equation is used for this purpose.

In the last section, numerical examples are presented that demonstrate the versatility and efficiency of
proposed model. The effects of structural damping and limited driving power are discussed.

The discretization of the various components of this model were formulated within the framework of the
energy preserving (see e.g. Simo and Wong, 1991; Simo et al., 1995; Simo and Tarnow, 1994; Simo and
Tarnow, 1992; Bauchau et al., 1995) and decaying schemes (see e.g. Bauchau and Theron, 1996a,b;
Bottasso and Borri, 1997; Bottasso and Borri, 1998; Bauchau and Joo, 1999; Bauchau, 1998; Bottasso et al.,
2000; Bauchau and Bottasso, 1999). In these schemes, unconditional stability is achieved for nonlinear
elastic multibody systems by combining two features: an energy preservation or decay statement for the
elastic bodies of the system, and the vanishing of the work done by the forces of constraint. The use of these
unconditionally stable schemes is of particular importance in problems involving joints with clearance, due
to the presence of a number of nonlinear holonomic constraints, and to the rapidly varying dynamic re-
sponse of the system associated with the intermittent contact phenomena.

2. Kinematic conventions and notations

The kinematic description of bodies in their reference and deformed configurations will make use of
three orthogonal triads. First, an inertial triad is used as a global reference for the system; it is denoted &%
with unit vectors i, i, and i3. A second triad .%,, with unit vectors ey, €, and ey is attached to the body
and defines its orientation in the reference configuration. Finally, a third triad %" with unit vectors e, e,
and e; defines the orientation of the body in its deformed configuration.

Let uy and u be the displacement vectors from .#; to ¥y, and ¥, to &, respectively, and Ry and R the
rotation tensors from .%; to ¥, and ¥, to %", respectively. In this work, all vector and tensor components
are measured in either ; or . For instance, the components of vector u measured in .%;, and &~ will be
denoted u, and u*, respectively, and clearly

u' = RIR"u. (1)

Similarly, the components of tensor R measured ., and %" will be denoted R, and R*, respectively. The
skew-symmetric matrix formed with the components u will be denoted .

3. Kinematic description of joints with clearance

The kinematic description of joints with clearance will be divided into two- and three-dimensional
models. For two-dimensional problems, a revolute joint with clearance can be viewed as a planar joint with
a unilateral constraint (see Section 3.1). The clearance, or distance between the inner and outer races, can be
evaluated from the kinematic variables associated with the planar joint. A similar approach can be applied
to spherical joints with clearance. In the three-dimensional case, the clearance can still be related to the
kinematic variables of the joint, although this relationship is more complex (see Section 3.2).
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Fig. 1. Planar joint in the reference and deformed configurations.

3.1. Two-dimensional case: the planar clearance joint

A revolute joint with clearance can be modeled as a planar joint with the appropriate addition of a
unilateral contact condition. Consider the planar joint depicted in Fig. 1; the outer and inner races of the
joint are modeled as bodies K and L, respectively. In the reference configuration, the position of body K is
defined by its position vector uf and its orientation is determined by a body attached triad %, with €,
normal to the plane of joint. The radius of the outer race is denoted p*. In the deformed configuration, body
K undergoes a displacement #* and its orientation is defined by a triad %*. The kinematic variables as-
sociated with body L, which represents the inner race of the revolute joint, are defined in a similar manner.

The planar joint is associated with the following constraint conditions

Ci=e'di=0; Gr=e'ei=0; G =e"(uy+u) =0, (2)

u’ — u*. Kinematic condition %5 = 0 implies that body L remains in the plane

normal to €T and passing through body K. Conditions ¢; = %, = 0 imply that ¢} remains normal to that
same plane. The implementation of the holonomic constraints (Eq. (2)) is discussed in Bauchau (1998).

Contact may occur between the inner and outer races of the joint. As shown in Fig. 1, the relative
distance ¢ between the races is

where uy = uf — uf and u = u

q=p"—p" —lug+u (3)
This equation defines the relative distance ¢ in terms of the kinematic variables of the planar joint. The
relative distance is defined by the addition of a fourth constraint

Co=q—p" +p" +|ug +ul = 0. 4)

As discussed in Bauchau (1998), holonomic constraints are enforced by the addition of a constraint po-
tential 1€, where A is the Lagrange multiplier. The forces of constraint .Z ¢ corresponding to this constraint
are readily obtained as

Sut 1T [ —24/d uk 1"
2086 =|sul | | 2a/d | = |su| 7, (5)
dq A 7
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where 4 = u, + u, and d = |4|. The subscripts (-). and (-); denote the value of a quantity at the beginning
and end times of a typical time step, denoted ¢ and ¢, respectively. The change in the value of the constraint
between the final and initial states is now evaluated

T

A
Cor — Cai = (qr — qi) +di — di = (qr — q1) +;_m(ﬂf_ﬂi)a (6)

where the subscript (-), indicates an averaged quantity, i.e. 4,, = (4; + 4;)/2 and d,, = (dr + d;)/2. This
result suggests the following time discretization of the constraint forces

_Simém /dm
Z::n = S;LmAm/dm 5 (7)
Shm

where s is a scaling factor for the unknown, mid-point value of the Lagrange multiplier 4,,. In view of Eq.
(6), the work done by the constraint forces during the time step is A% = s4,,(€4 — €4). Clearly, this work
vanishes if €4 — %4 = 0. In order to avoid the drift phenomenon, it is preferable to enforce the condition
%4 = 0 at each time step. Consequently, the forces of constraint are discretized in time in a manner that
guarantees the satisfaction of the nonlinear constraint manifold, i.e. the constraint condition will not drift.
At the same time, the discretization implies the vanishing of the work performed by the forces of constraint
at the discrete solution level. As a result, the discrete energy conservation laws proved for the flexible
members of the system are not upset by the introduction of the constraints. This energy preserving for-
mulation can be readily extended to an energy decaying formulation by following the steps outlined in
Section 4.3 of Bauchau (1998). The discretized forces of constraint (Eq. (7)) can be linearized to yield the
Jacobian matrix of the constraints. Within the framework of the finite element formulation, this equivalent
stiffness matrix is assembled with all other stiffness contributions of the system. The Lagrange multipliers
are then explicitly computed at each time step.

The proposed formulation is also valid for a spherical joint with clearance. In this case, the displace-
ments and rotations of body K and L are free, and constraint (4) is used to define the relative distance ¢.

3.2. Three-dimensional case: the spatial clearance joint

When the motion of the joint cannot be assumed to remain planar, a more complex, three-dimensional
configuration must be considered, such as that presented in Fig. 2. The outer race of the joint, denoted body
K, is idealized as a cylinder of radius p*. The inner race, denoted body L, is idealized as a thin disk of radius
p’. In the reference configuration, the position of the outer race is defined by the position vector uf of its
center and its orientation is determined by a body attached triad y{;, with ¢4, along the axis of the cylinder.
In the deformed configuration, the outer race center undergoes a displacement ' and its orientation is
defined by a triad .#*. The kinematic variables associated with body L are defined in a similar manner, with
¢4, normal to the axis of the disk.

A triad d, d%, d% is now defined in the following manner: d% = ¢ is along the axis of the cylinder, d*
makes an arbitrary angle ¢ with e, and d completes the triad

di =cos e +sinpes;  dy = —singel +cospes;  dy =df x db. (8)

Consider now the plane tangent to the cylinder, defined by vectors c_z”; and d’;, as depicted in Fig. 3. Point
P, of position vector ul + u + p*d’, belongs to this plane.

The relative distance g between disk L and this tangent plane is now evaluated. The candidate contact
points on the plane and disk are denoted zF and z’, respectively (see Fig. 3). The tangent to the disk at the
candidate contact point must be in the plane of the disk and parallel to the contacting plane, i.e. normal to
¢, and €%, respectively. The following triad is now defined
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Fig. 3. Relative distance between the candidate contact points.
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dye; )
h ?
where h = |§f§ﬁ| Clearly, dg‘ is parallel to the tangent at the candidate contact point, g’f points toward the
candidate contact point, and dj is normal to the plane of the disk. The vector from point P to point z' is

&= -

di=¢él;  di=dle, (9)

P = [(uy +u') + p'd)] — [(uh +u*) + p*di| = uy +u+ p'd) — p'd], (10)

where p’ is the radius of the disk, uy = uf — uf, and u = u’ — u*. The relative distance g is found by pro-
jecting Pz* along the unit vector —g”f (see Fig. 3) to find

G=-d\"P = —d{"(uy +u) — p'd"d} + p". (11)

As shown in Fig. 3 the candidate contact point z* is in the tangent plane, but not necessarily on the cy-
lindrical surface defining the outer race of the joint. The relative distance g defined by Eq. (11) is clearly a
function of the angle ¢ that defines the location of the tangent plane around the cylinder. The relative
distance ¢ between the cylinder and disk is found by minimizing g with respect to the choice of ¢, i.e. by
setting dg/d¢ = 0 to find
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dy' [p[%é ~ (g +u)] =0, (12)
where g = géTQ'f. Note that for small angles g =~ 0 and /# ~ 1. An alternate manner of determining the angle
¢ is to observe that the minimum relative distance is obtained when P is orthogonal to gg. In view of Eq.
(10), this condition is

d5TP" = dT [(uy + u) + p'd] = 0. (13)

At first, this geometric condition appears to be different from that obtained from the minimization of g with
respect to ¢ (Eq. (12)). However, the use of Eq. (9) and of standard vector identities implies

I =i 1 . 1
&1 =~ elel = — L8 [elela] = o7 eed - o] = - Sl (19

Introducing this result into Eq. (13) yields the previously found condition (12).
In summary, the relative distance between the inner and outer races of the joint can be found by im-
posing the following constraint

C=q—p*+ (u+u)'d+plddl =0, (15)

and by using a Newton iteration method to find the contact angle ¢ defined by Eq. (12). These two relations
implicitly define the relative distance ¢ and the angular location ¢ of the candidate contact points. The
resulting constraint forces and corresponding discretization can be obtained in a manner similar to that
discussed in the previous section.

A realistic model of a journal bearing with clearance is obtained by using two spatial clearance joints
connected by a rigid body, as depicted in Fig. 4. Care must be taken to constrain the motion of the journal
along its axis to prevent the inner race from slipping out of the outer race. To that effect, the relative
distance ¢ in the axial direction is defined

g=(—u)"'é (16)
The following holonomic constraint can be used to find ¢,
C=q—(u —u)é (17)

The associated constraint forces and corresponding discretization can be obtained in a manner similar to
that discussed in the previous section.

Spatial clearance

joints N

S

Outer race

Fig. 4. The thin-disk/cylinder pair.
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4. Unilateral contact condition

If the inner and outer races of the joint are assumed to be perfectly rigid, the unilateral contact condition
is expressed by the inequality ¢ > 0, where the relative distance is given by Eq. (4) or (15), for the two- and
three-dimensional cases, respectively. This inequality constraint can be readily transformed into an equality
constraint ¢ — #* = 0 through the addition of a slack variable r. Hence, the unilateral contact condition is
enforced as a nonlinear holonomic constraint

€ =q—1=0. (18)

This constraint is enforced via the Lagrange multiplier technique discussed earlier.

In general, both inner and outer races of the joint will present local deformations in a small region near
the contact point. In this case, the center of mass of the races are allowed to approach each other closer
than what would be allowed for rigid races. This quantity is defined as the approach and is denoted «;
following the convention used in the literature (see e.g. Timoshenko and Gere, 1961), @ > 0 when pene-
tration occurs. For the same situation, g < 0, see Egs. (4) and (15). When no penetration occurs, a = 0, by
definition, and ¢ > 0. Combining the two situations leads to the contact condition ¢ + a > 0, which implies
q = —a when penetration occurs. Here again, this inequality condition is transformed into an equality
condition € = g +a — > =0 by the addition of a slack variable r. This constraint is enforced via the
Lagrange multiplier technique.

When the races are allowed to deform, a relationship between the contact force F and the approach must
be selected. Hertz contact theory (see e.g. Timoshenko and Gere, 1961) states that F = ka’/? for the contact
between two sphere; the stiffness constant k& depends on the material properties and radii of the spheres in
contact. For journal bearings, the inner and outer races are cylindrical, hence, this relationship is no longer
valid. Dubowsky and Freudenstein (1971) suggest a force—displacement relationships of the form
a=kF(nk, —InF), where k; and k, are constants that depend on the material properties and the geo-
metry of the bearing. Similar or identical expressions are used by other authors (see e.g. Ravn et al., 1999;
Liu and Lin, 1990; Rogers and Andrews, 1977).

5. Lubrication model

The pressure distribution in the oil film used to lubricate a bearing can be found by solving Reynolds
equation (see e.g. Dowson and Higginson, 1966). The derivation of this equation requires a number of
assumptions: incompressible, Newtonian fluid; uniform viscosity; laminar flow; constant pressure across
the film thickness; and negligible body and inertial forces. If the pressure variation in the direction parallel
to the journal is assumed to be negligible, closed form solutions can be found, as suggested by Pinkus and
Sternlicht (1961). This corresponds to an infinitely long bearing with negligible end leakage effects. Fig. 5
shows the outer and inner races of a revolute joint with lubricant. The following triad is defined

1=

41:

dy=¢5  d,=dud,, (19)

=

where u = u} — uf +u' — u*. Clearly, d, defines the position for minimum film thickness 4. The eccentricity
e and its derivative é are defined as

e=lu; e=i'd, (20)

or in nondimensional form
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k
, €3

Fig. 5. Bearing with lubricant.

e . e
_pk_pl’ 6_pk_pl'
The derivation of Pinkus and Sternlicht (1961) gives the forces F; and F> acting on the journal in the ¢f and
s directions, respectively, as

€

(21)

I8 I8

L . L .
FI:—(pllj_ippl)z (F,.siny — Fycosyr); ngﬁ (F.cosyy — Fsiny), (22)
where L is the bearing length, and
"o 6mz()a()l_ 2li))”zK; =0 2)(616 2y ke w2+ K. (23)
+e€ —€ +e€ —€
The parameters used in these expression are defined as
AN
212 w - 2.
k=(1-¢) ( F ) +€2 ; (24)
_J(k+3)/(k+3/2) é>0
K_{k/(k+3/2) e<0 (25)

and o = (o' — o*)'ék.
For the case of bearings of finite length, numerical solutions of Reynolds equation have been proposed
in the literature for bearing lubrication applications (Liu and Lin, 1990). Such solutions could be used for

the modeling of lubrication in spatial clearance joints.

6. Electrical motors

In multibody simulations, dynamical systems are often driven at a constant angular velocity by pre-
scribing the relative rotation at a revolute joint. While this is a convenient approximation, it implies that
unlimited power is available to obtain the desired rotation, resulting in an overly stiff system. When
dealing with elastic systems, this unlimited power can excite very high frequency oscillations of the elastic
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components, resulting in numerous intermittent contact events and high contact forces. Consequently, the
modeling of structural damping appears to be indispensable for this type of problems.

In practice, drive trains have specific physical characteristics that couple with system dynamics and a
realistic model of the drive system appears to be particularly important when dealing with clearance joints.
To illustrate this point a simple model of a direct current (DC) motor will be used. For this drive system, an
input voltage V" and current [ create an output torque 7. The current is governed by the following dif-
ferential equation

d/ do
L—+RI+K,—=V, 26
TR Koy, (26)
where L is the motor inductance, R its resistance, K,, a voltage coefficient that represents an induced voltage
e, = K,w, and ¢ the relative rotation. The resulting torque is given as 7' = K1/, where Kt is the torque
coefficient.

7. Numerical examples

The proposed formulation will be validated with the help of different numerical examples involving the
contact condition and lubrication for different types of joints with clearance.

7.1. Crank-slider mechanism with a planar revolute joint

The first example deals with the crank-slider mechanism depicted in Fig. 6. The crank is connected to
both ground and arm by means of revolute joints. A torque is applied to the crank so as to achieve a
constant angular velocity €, rotating through an angular displacement 6. The arm is connected to the slider
by a revolute joint. Both crank and arm are flexible, homogenous beams.

The physical properties of the system were as follows: angular velocity 2 = 150 rpm, crank length
[, = 0.25 m, arm length /, = 0.75 m, slider mass m = 40 kg. The entire system is made of steel (Young’s
modulus £ = 190 GPa, Poisson’s ratio v = 0.33, and density p = 7,850 kg/m?) with a rectangular cross-
section of 30 x 10 mm for both the crank and the arm. Structural damping in the flexible components was
modeled by viscous forces F7; proportional to the strain rates, 7, = u,C*é*, where p, is the damping co-
efficient, ¢* the strains, and C* the cross-sectional stiffness matrix. F7, ¢*, and C* are all measured in a body
attached coordinate system. The proportional damping coefficient was p, = 10~* s. The crank and arm were
each modeled using four cubic beam elements. Simulations were run for four complete revolutions of the
crank to obtain a periodic solution of the problem. The figures below present the results for the third
revolution, using 0 as the crank angular position (0 < 0 < 2x). The computation used the strategy for ad-
aptation of the time step size described in Bauchau (1998). Typically 500-750 time steps were required per
revolution.

0 Revolute joint

Fig. 6. Crank-slider mechanism.
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Table 1

Physical properties of the motor
Motor constant Value
Rated current 40 A
Rated power 15 hp
Nominal speed 150 rpm
No-load speed 155 rpm
Torque coefficient 17.80 Vs
Voltage coefficient 1470 Vs
Resistance 0.15Q
Inductance 100 pH
DC Voltage 225V

Five cases were considered, denoted case Al through AS. Case Al is the baseline case. In case A2, the
revolute joint at point A was replaced by planar clearance joint of inner and outer radii p’ = 9.5 mm and
pF =10 mm, respectively. The contact model used Hertz contact theory with a stiffness coefficient
k = 64 MN/m*/2. The joint had no lubrication. Lubrication was added for case A3; the lubricant had a
viscosity of p =400 cp and the bearing a length L = 15 mm. Finally, in cases A4 and A5, the crank was
driven by a DC motor operating under a constant input voltage of 225 V, the other motor properties are
listed in Table 1. Case A4 had a revolute joint at point A, whereas case A5 had a planar clearance joint
without lubrication.

Fig. 7 shows the crank driving torque for the five different cases. The presence of clearance (cases A2 and
A3) significantly alters the torque required to drive the mechanism. Subsequent to elastic deformations of
the mechanism induced by contact events at the clearance, the driving torque presents oscillations at a
frequency near the first natural bending frequency of the arm. This results in a 35% increase in maximum
torque between cases Al and A2 or A3. Note that cases A2 and A3 present very similar responses. This
should be expected, since both Hertz contact model and lubrication model imply a very high stiffness at
contact. Of course, Hertz model requires contact to occur before any stiffness appears, whereas the lu-
brication model introduces an increasing stiffness as the races are coming in closer proximity to each other.
The presence of dissipative terms in the lubrication model seems to be of minor importance. When the
mechanism is driven by a DC motor (case A4), a large reduction in required torque is observed (a 33%

APPLIED TORQUE [N.m]

600 H i H i i i i
0 50 100 150 200 250 300 350
CRANK POSITION [deg]

Fig. 7. Time history of the driving torque at the crank for cases Al: (), A2: (+), A3: (O), Ad: (¢), and AS: (A).
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reduction from case Al to A4). This is due to the fact that the crank is no longer rotating at a constant
angular speed. The DC motor characteristics in Table 1 were selected so as to provide a nearly constant
angular speed averaging 150 rpm over one revolution, (see Fig. 8). Case AS features oscillations similar to
those observed in cases A2 and A3, although the amplitudes are reduced; a 22% increase (from case A4 to
AS5) as compared to a 35% increase for cases Al and A4. The arm mid-span bending moments are depicted
in Fig. 9. The behavior of the various cases mirrors that observed in the previous figure. Finally, Fig. 10
shows the contact forces for cases A2 and AS. A large reduction (38% from case A2 to AS5) in contact force
is observed.

Next, elastic effects were investigated in cases B1 through B3. Case BI is the baseline case, identical to
case A2, whereas in cases B2 and B3 the stiffness characteristics of the system were artificially increased by
multiplying Young’s modulus 10 and 50 fold, respectively. Clearly, case B3 is a “nearly rigid” system. Fig.
11 shows the crank driving torque for the different cases. For cases B2 and B3, the oscillations observed at

156 T T T T T

@
g
T

o
4}
T

a
:

MOTOR ANGULAR VELOCITY [rpm]
g g
\ :

1491

148 1 L L A i 1
[ 50 100 150 200 250 300 350

CRANK POSITION [deg]

Fig. 8. Time history of the motor angular velocity for cases A4: (¢) and AS: (A).
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Fig. 9. Time history of the arm mid-span bending moments for cases Al: ((J), A2: (+), A3: (O), A4: (¢), and AS: (A). For clarity, cases
A4 and AS were shifted down by 30 Nm.
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Fig. 11. Time history of the crank driving torque for case Bl: (+); B2: (¢); B3: (0).

crank positions 0 ~ 120° and 270° are replaced by oscillation of much shorter period (reflecting the in-
creasing stiffness of the system) and much higher amplitude. The peak driving torque increased by about
77% and 190% for cases B2 and B3, respectively. The increased stiffness of the system also increased the
number of contact events and the magnitude of the peak contact forces, as depicted in Fig. 12. It should be
noted that the increasing stiffness of the system negatively impacts the computational time: cases Bl
through B3 required about 800, 1000 and 1200 time steps per revolution, respectively.

Finally, the effect of structural damping in the arm and crank was investigated. Cases C1 through C4 are
identical to case Al but with proportional damping coefficients of x, = 1073, 10~%, 107> and 0 s, respec-
tively. Cases C5 through C8 are identical to case case A2 with the same four values of proportional
damping coefficients, respectively. Fig. 13 shows the crank driving torque for various cases, and illustrates
the fact that the predicted response is rather insensitive to the magnitude of the damping coefficient. As
expected, the oscillation amplitudes slightly increase as the damping coefficient is reduced. A similar be-
havior is observed for the arm mid-span bending moments depicted in Fig. 14, although the increase in



54 O.A. Bauchau, J. Rodriguez | International Journal of Solids and Structures 39 (2002) 41-63

o T
- ;L“”;

-2000

&
S
S
3
T

A
S
3
3
T

CONTACT FORCE [N]
o N )
8
T

L6000 [ e e SR - E 1} BETEERTRTRPR SN Ml B —— i

7000 |rmerenr iy

T

-8000

0 50 100 150 200 250 300 350
CRANK POSITION [deg]

Fig. 12. Time history of the contact force for case Bl: (+); B2: (¢); B3: ().

5000 T T T T T

4000‘

3000

2000

APPLIED TORQUE [N.m]

1000

-1000 1 ] i 1 ' 1 i
0 50 100 150 200 250 300 350

CRANK POSITION [deg]

Fig. 13. Time history of the crank driving torque for case C1: (O); C2: (4); C3: (¢); C5: (); C6: (A); C7: (X). For clarity, cases C2, C6
and C3, C7 were shifted up by 2000 and 4000 N m, respectively.

oscillation amplitude is significantly more pronounced as the damping coefficient is reduced. Fig. 15 shows
the corresponding results for the contact force. Peak values of these forces are very sensitive to the damping
coefficient; peak contact force increase 100% and 190% for u, = 10~* and 107> s, respectively, when
compared to the u, = 1073 s case.

Fig. 16 illustrates the very high frequency oscillations that result from setting p, = 0 s. Indeed, the very
high vibration modes of the arm are excited at the first contact event and continue to vibrate in the absence
of dissipation mechanisms. These high frequency oscillations then result in many more discrete contact
events that in turns, increasingly excite high frequency modes. The predicted response in mainly high
frequency ‘‘numerical noise”, an artifact of the finite element discretization procedure, and bear little re-
semblance to the physical behavior of the system. Furthermore, the absence of dissipation mechanisms
negatively impacts the computational process: baseline simulations (u, = 107* s) require about 600 time
steps per revolution, simulations with clearance joints (x, = 10~* s) about 800, and simulations with u, = 0
s about 6000 steps. The effect of damping is much greater than the effect of lubrication (see Fig. 7). This
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Fig. 15. Time history of the contact force for case C5: (O); C6: (+); C7: (OJ).

discussion leads to the following observations: an accurate evaluation of the importance of clearance effects
requires the proper modeling of the elasticity of the system, a proper simulation of the drive system, and a
precise knowledge of the dissipative forces present in the elastic mechanism. The impact of anyone of these
phenomena is at least as important as the effect of joint clearance.

7.2. Crank-slider mechanism with a spatial clearance element

The second example deals with the crank-slider mechanism depicted in Fig. 17. The flexible mechanism is
identical to that described in the first example. Three cases were considered, denoted case Al through A3.
Case Al is the baseline case. In case A2 the revolute joint at point A was replaced by two spatial clearance
joints of inner and outer radii p’ = 9.5 mm and p* = 10 mm, respectively, joined by a rigid body. The
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Fig. 17. Crank-slider mechanism with a spatial clearance element.

distance between the spatial clearance joints was d = 15 mm. The contact model for both joints used Hertz
contact theory with a stiffness coefficient £ = 64 MN/m?/2. The joints had no lubrication. Finally, in case
A3 the spatial clearance joint system was driven by a DC motor which properties are listed in Table 1. The
presence of the spatial clearance joints profoundly alters the nature of the problem. Whereas for planar
joints the position and orientation of the bearing inner race is constrained by Eq. (2), those same quantities
are free for the spatial clearance joint. Hence, the inner race is free to undergo three dimensional dis-
placements and rotations. The displacement of the inner race along its own axis was constrained by stops to
40.25 mm out-of-plane motions. Forces and moments are applied at the arm tip only when contact occurs
at either of the spatial clearance joints. To demonstrate this effect, a short perturbation was applied at point
B in the form of a triangular pulse of maximum amplitude of 10 N, and total duration of 0.3 s.

Fig. 18 shows the crank driving torque for the different cases. When compared to Fig. 7, it appears that
the details of the clearance model had little effect on the torque required to drive the system. The arm out-
of-plane tip displacements at point A (mid-point between the two spatial clearance joints) are shown in
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Fig. 19. Time history of the arm out-of-plane displacement at point A for case A2: (O), and A3: ([J).

Fig. 19; of course, such displacements were zero for the previous example. In both cases A2 and A3, the
inner race repeatedly hits the out-of-plane stops. Fig. 20 shows the contact forces in one of the two spatial
clearance joints. Here again, lower contact forces (40% reduction from cases A2 and A3) are observed when
the system is driven by a DC motor.

The three-dimensional nature of the system response raises questions about the stability of this flexible
mechanism: Is there a critical angular speed above which the out-of-plane motion becomes unbounded? To
investigate this problem, the out-of-plane stops were removed and the behavior of the system was studied
for increasing crank speeds Q = 75, 126 and 150 rpm. Fig. 21 shows the out-of-plane arm displacements at
point A. At low speed (22 = 75 rpm) the out-of-plane motion remains very small, whereas at high speed
(Q = 150 rpm) the out-of-plane motion quickly diverges. The critical speed of Q. = 126 rpm was deter-
mined by trial and error: for speeds above Q. the out-of-plane motion quickly diverges. The corresponding
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Fig. 21. Time history of the arm out-of-plane displacement at point A for Q = 75 rpm: (O), 126 rpm: ([J), and 150 rpm: (+).

contact forces in the spatial clearance joint are shown in Fig. 22. As expected, these forces increase with
increasing crank speed.

7.3. The quick return mechanism problem

The last numerical example is a classical quick return mechanism problem involving flexible bodies. Fig.
23 depicts the problem in the initial configuration: a flexible arm of length L, = 1.0 m pivots about point B
and is connected to a link of length Z; = 0.25 m. The link actuates the shuttle which is constrained by a
prismatic joint to move in the horizontal direction only. A crank of length L. = 0.20 m is pinned at R and
slides along the arm. The formulation of sliding elements in flexible multibody systems can be found in
Bauchau (2000); Bauchau and Bottasso (in press). A torque is applied to the crank so as to achieve an
angular velocity Q. Simulations were run for four complete revolutions of the crank to obtain a periodic
solution of the problem. The figures below present the results for the third revolution.
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Fig. 23. The quick return mechanism problem.

Although modeled as flexible members by two cubic beam elements each, the crank and link were rather
stiff linkages with the following physical properties: axial stiffness EA = 168.0 MN, bending stiffness
EI = 5.0 MN m? shearing stiffness GK = 54.0 MN, mass per unit span m = 6.16 kg/m, and mass moment of
inertia per unit span / = 0.82 gm?. On the other hand, the arm was a flexible member modeled with 24
cubic elements, and had the following physical properties: axial stifiness EA = 168.0 MN, bending stiffness
EI = 50.0 kNm?, shearing stiffness GK = 54.0 MN, mass per unit span m = 6.16 kg/m, and mass moment
of inertia per unit span / = 2.1 gm. The shuttle has a mass M; = 2.5 kg and the sliding mechanism a mass
My, = 0.31 kg and mass moment of inertia Iy, = 0.27 gm?. The crank was driven by a DC motor pre-
senting the characteristics listed in Table 1 which resulted in an average angular speed of 2 =~ 150 rpm. The
proportional damping coefficient was u, = 10~* s for all flexible members of the system.

Three cases were investigated, denoted case 1 through 3. Case 1 is the baseline case corresponding to a
rigid mechanism: the simulation was run with a very stiff arm (bending stiffness EI = 5.0 MNm?). In case 2,
the revolute joint at point N was replaced by a planar clearance joint of inner and outer radii p/ = 9.5 mm
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Fig. 24. Time history of the shuttle velocity for case 1: ((J); case 2: (O); case 3: (O).

and p* = 10 mm, respectively. The contact model used Hertz contact theory with a stiffness coefficient
k = 64 MN/m*/. Finally, case 3 involved two planar clearance joint at points N and B. No lubrication was
used in the clearance joints.

Fig. 24 shows the time history of the shuttle velocity. As expected, the small joint clearance has little
impact on system kinematics, and hence on shuttle velocity: a 4% increase is observed between cases 1 and
3. The arm quarter-point moments are more significantly altered, as shown in Fig. 25: the peak moment for
case 3 is 34% higher than the baseline. The driving torque shown in Fig. 26 exhibits similar characteristics.
The reason behind this increase in internal loads is the behavior of the contact forces at the joint clearance
depicted in Fig. 27. For case 2, the history of the contact force is rather smooth, except during the latter
part of the revolution (rev ~ 2.8) when “knocking” is evident at the joint. A similar behavior is observed
for case 3, although knocking is also observed in the early portion of the revolution, rev ~ 2.2-2.4. As
expected, the contact forces at point B are significantly larger, due to the configuration of the system.
Finally, Fig. 28 shows the power required to drive the mechanism. As expected, cases 2 and 3 require more

ARM QUARTER-POINT MOMENTS [N.m]

21 22 23 24 25 26 27 28 29 3
NUMBER OF REVOLUTIONS

Fig. 25. Time history of arm quarter-point moments for case 1: ((J); case 2: (O); case 3: (O).
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Fig. 27. Time history of the contact force for case 2 (top graph): point B (O); case 3 (bottom graph): point B (¢); point N ([J).

instantaneous power: peak values are 33% and 66% higher for cases 2 and 3, respectively. This increased
power is expended towards increasing the vibratory energy in the flexible mechanism. Repeated impacts at
joint clearances are likely to increase wear and shorten the lifetime of the mechanism.

8. Conclusions

A comprehensive approach to the modeling of joints with clearance in nonlinear, flexible multibody
systems has been presented. The problem was formulated within the framework of the finite element
method and was conveniently broken into three distinct parts: a purely kinematic part describing the
configuration of the joint inner and outer races, a unilateral contact condition giving rise to a contact force
and a lubrication model. The formulation of these various aspects of the problem involved a number of
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Fig. 28. Time history of the required power for case 1: ((J); case 2: (O); case 3: (O).

nonlinear holonomic constraints enforced via the Lagrange multiplier technique. This work was developed
within the framework of energy preserving and decaying time integration schemes that provide uncondi-
tional stability for nonlinear, flexible multibody systems comprising joints with clearance.

The numerical examples presented in this paper leads to the following observations. An accurate evalu-
ation of the importance of clearance effects requires the proper modeling of the elasticity of the system, a
proper simulation of the drive system, and a precise knowledge of the dissipative forces present in the elastic
mechanism. The impact of anyone of these phenomena is at least as important as the effect of joint
clearance. When elasticity is neglected, peak forces are grossly overestimated. If the drive train is not
properly modeled, peak forces are once again overestimated. Ignoring the effect of the dissipative forces in
the elastic systems dramatically increases the computational cost, and generates large amounts of “nu-
merical noise”. In the presence of clearance, the effects of lubrication were found to be rather small in the
sense that they had little impact on the overall dynamic response of the system.

Ignoring the effects of system compliance or material dissipative forces had a negative impact on
computational efficiency as artificially small time step sizes were required to capture high frequency nu-
merical noise. Finally, when appropriate models are used, the simulation of clearance in joints only results
in a moderate increase of computational time (about 20-40%) as compared to the modeling of joints
without clearance. Time step size adaptivity is an important part of the computational strategy.
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